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ABSTRACT

Plants, as sessile organisms, depend on a multi-layered innate immune system to withstand diverse biotic stressors. Their
defense begins with physical and chemical barriers, followed by inducible responses mediated through pattern-triggered (PTI)
and effector-triggered immunity (ETI). These local defenses integrate with systemic mechanisms, notably Systemic Acquired
Resistance (SAR) and Induced Systemic Resistance (ISR), which provide long-lasting, broad-spectrum protection. SAR operates
through salicylic acid (SA)-dependent signaling involving NPR1, NPR3/4, WRKY, and TGA transcription factors, along with
metabolites like N-hydroxy-pipecolic acid (NHP). Epigenetic mechanisms, including DNA methylation and histone modifications
such as acetylation and methylation, fine-tune SAR by modulating chromatin accessibility and gene expression. These heritable
yet reversible changes establish immune memory, strengthening both local and transgenerational resistance and offering
promising strategies for durable disease management and sustainable crop protection.
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As sessile organisms, plants are constantly exposed
to a wide range of biotic challenges, including pathogens,
pests, and herbivores. Unlike animals, which rely on
adaptive immunity, plants rely solely on innate
immunity, a sophisticated and multi-layered defense
system that has evolved to perceive, deter, and neutralize
threats. This defense begins with constitutive barriers
such as the cuticle, wax coatings, and reinforced cell
walls, which serve as the first line of physical protection
against invasion. These structural defenses are
complemented by a diverse arsenal of antimicrobial
secondary metabolites, including phenolics, alkaloids,
and terpenoids, which act as chemical deterrents to
potential attackers (Dangl et al., 2013; Srivastava et al.,
2014; Andolfo and Ercolano, 2015; Srivastava and Ahn,
2015; Srivastava et al., 2016; Srivastava et al., 2018;
Kumar et al., 2021; Srivastava and Lodhi, 2022;
Srivastava et al., 2023).

Beyond these passive defenses, plants activate
inducible responses upon threat detection. They rapidly
synthesize defense proteins and specific phytochemicals,
forming a dynamic response network that includes both
broad-spectrum and pathogen-specific immunity.
Central to this are two layered immune responses:
pattern-triggered immunity (PTI) and effector-triggered
immunity (ETI), which detect conserved microbial
patterns or pathogen-derived effectors
(MAMPs/PAMPs), respectively (Jones and Dangl,
2006). PTI is initiated when pattern-recognition
receptors (PRRs) on the plant surface, such as FLS2 in
Arabidopsis, recognize PAMPs like flg22 (Yu et al.,
2024). This activates a cascade involving ion fluxes,
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ROS bursts, MAPK signaling, and callose deposition,
creating a robust barrier to pathogen invasion. To
overcome PTI, pathogens deploy effectors that suppress
host defense. In response, plants have evolved
intracellular receptors, mostly NB-LRR proteins, that
detect these effectors and trigger ETI. This stronger
immune reaction often involves localized cell death,
known as the hypersensitive response, as seen in the
interaction between Pseudomonas syringae AvrPto and
the tomato resistance protein Pto (Miller et al., 2017,
Lonjon et al., 2024). The coordination between PTI and
ETI is regulated through phytohormones like salicylic
acid (SA), jasmonic acid and ethylene. SA primarily
mediates defense against biotrophic pathogens, while
jasmonic acid and ethylene are more active against
necrotrophs and herbivores (Vidhyasekaran, 2015; Ding
et al., 2022). This hormone crosstalk allows plants to
fine-tune their responses based on the nature of the
threat. While PTI and ETI are local responses, they can
initiate systemic defenses in uninfected tissues. One such
mechanism is systemic acquired resistance (SAR), which
provides long-term, broad-spectrum immunity. SAR is
triggered by localized infection or chemical elicitors and
involves  signal generation, translocation, SA
accumulation, transcriptional reprogramming, and
priming of defense genes (Ryals et al., 1994; Klessig et
al., 2018; Zeier, 2021).

Epigenetic regulation refers to heritable but
reversible modifications in gene expression that occur
without changes in the underlying DNA sequence. These
modifications influence how genes are activated or
silenced and are crucial for regulating plant growth,
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development, stress tolerance, and environmental
adaptation. The major epigenetic mechanisms include
DNA methylation, which typically represses gene
transcription by altering chromatin structure; histone
modifications, which change chromatin accessibility and
thereby influence transcriptional activity; chromatin
remodelling, which repositions nucleosomes to regulate
gene accessibility; and non-coding RNAs, which
modulate gene expression either post-transcriptionally or
by guiding epigenetic modifications to specific genomic
regions (Srivastava et al., 2014; Srivastava and Ahn,
2015; Srivastava et al., 2016; Srivastava and Lodhi,
2022; Srivastava et al., 2023). Together, these
interconnected processes form a highly dynamic
regulatory network that allows plants to fine-tune gene
expression, establish stress memory, and even transmit
adaptive responses across generations, all without
altering their genetic code.

SYSTEMIC DEFENSE MECHANISMS IN
PLANTS: A STRATEGIC IMMUNE RESPONSE
Plants rely on systemic defense mechanisms to
survive in pathogen-rich environments, especially since
they cannot escape or relocate. One of the most vital
strategies is SAR, an immune response that transforms a
localized infection into long-lasting and whole-plant
resistance. Triggered by initial pathogen attack, SAR
involves the accumulation of SA and activation of
pathogenesis-related (PR) genes (Ryals et al., 1994;
Klessig et al., 2018). This primes the entire plant to
respond more effectively to future infections, even by
unrelated pathogens. Unlike local defenses such as the
hypersensitive response, which causes cell death at
infection sites, whereas SAR is non-lethal and sustained,
often lasting for weeks (Durrant and Dong, 2004).
Another major systemic strategy is Induced Systemic
Resistance (ISR), typically initiated by beneficial root-
associated microbes. ISR relies on jasmonic acid and
ethylene signaling rather than SA, and enhances defense
without triggering PR gene expression (Van Wees et al.,
2008; Pieterse et al., 2014; Yu et al., 2022). Together,
SAR and ISR represent an integrated defense network
that allows plants to detect, signal, and prepare distant
tissues against potential threats. These mechanisms not
only ensure survival but also demonstrate an efficient
form of immune memory and adaptability, with growing
relevance for crop protection and sustainable agriculture.

GENETIC REGULATION OF SAR PATHWAY
SAR is regulated by a complex genetic network

involving biosynthetic, signaling, and transcriptional

elements that collectively coordinate systemic immunity
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in plants. At the core of SAR lies the SA pathway, which
operates through two major biosynthetic routes: the
isochorismate  (IC) pathway, predominant in
Arabidopsis, and the phenylalanine ammonia lyase
(PAL) pathway, more active in non-model plants
(Wanner et al., 1995; Wildermuth et al., 2001; Huang et
al., 2010). In the IC pathway, ICS1, EDS5, and PBS3
mediate SA synthesis and transport, while the PAL genes
encode enzymes that convert phenylalanine into trans-
cinnamic acid, a precursor of SA (Wildermuth et al.,
2001; Lefevere et al., 2020). Once synthesized, SA
activates the master regulator NPR1, which translocates
to the nucleus and interacts with TGA transcription
factors to induce PR genes (Cao et al., 1994; Cao et al.,
1997; Fu and Dong, 2013; Agarwal et al., 2020). NPR1
stability is further modulated by NPR3 and NPR4, which
act as SA receptors regulating NPR1 degradation or
stabilization in a concentration-dependent manner (Fu et
al., 2012; Fu and Dong, 2013; Agarwal et al., 2020).
Upstream, the EDS1-PAD4 complex initiates and
modulates SA accumulation and signaling, forming a
foundational layer of SAR activation (Wiermer et al.,
2005).

Transcriptional regulation of SAR involves
multiple transcription factor families. TGA factors
(TGA2, TGAS, TGAO6) directly cooperate with NPR1 at
SA-responsive promoters (Zhang et al., 2003; Kesarwani
et al., 2007; Backer et al., 2019), while WRKY factors
fine-tune defense crosstalk e.g., WRKY70 acts as a
positive regulator of SA-mediated responses, whereas
WRKY33 promotes jasmonic acid-dependent defenses
(Li et al, 2004; Eulgem and Somssich, 2007).
Additionally, SARD! and CBP60g activate /CS1, the
key gene of the IC pathway, reinforcing SA biosynthesis
during pathogen challenge (Zhang et al., 2010).

Beyond SA, N-hydroxy-pipecolic acid (NHP) has
emerged as a central SAR metabolite. Synthesized from
lysine via ALD1, SARD4, and FMO1, NHP primes
systemic tissues for enhanced immune readiness (Chen
et al.,, 2018; Hartmann et al., 2018). NHP works
synergistically with SA to activate NPR1-dependent
transcription and induces a positive feedback loop by
upregulating its own biosynthetic genes and enhancing
SA accumulation (Chen et al., 2018). Other systemic
signals, including glycerol-3-phosphate (G3P) and
azelaic acid, further contribute to long-distance
signaling, with DIR1 (Defective in Induced Resistance 1)
enabling their systemic transport (Maldonado et al.,
2002; Jung et al., 2009; Chanda et al., 2011; Cameron et
al., 2016; Kachroo et al., 2022). To prevent
overactivation, SAR is balanced by UGT76B1, a UDP-
glycosyltransferase that glycosylates and inactivates
both SA and NHP. Loss of UGT76B1 results in
excessive SAR activation and fitness penalties,
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underlining its role in immune homeostasis (von Saint
Paul et al., 2011; Bauer et al., 2021). Together, this
complex network, which includes TGA and WRKY
regulation, NPR1-centered transcriptional control, SA
and NHP metabolism, and UGT76B1-mediated fine-
tuning, ensures strong defense without sacrificing
development. These mechanistic discoveries also point
to potential avenues for using targeted techniques to
develop crops with long-lasting disease resistance.

EPIGENETIC REGULATION OF SAR PATHWAY

Epigenetic  modifications, including DNA
methylation,  histone = modifications,  chromatin
remodeling, and epigenetic priming, play crucial roles in
plant development and defense pathways (Srivastava and
Ahn, 2015; Srivastava et al., 2016; Srivastava and Lodhi,
2022; Lodhi et al., 2023; Srivastava et al., 2023). These
epigenetic regulators are essential for modulating SAR
by controlling defense-related gene expression (Figure

1).
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Figure 1: Epigenetic Regulation of SAR through DNA and Histone Modifications in Plants. The figure illustrates the
epigenetic regulation of plant defense responses during pathogen attack. DNA methyltransferases and demethylases
dynamically regulate gene expression by adding or removing methyl groups on cytosine residues, thereby influencing
transcriptional silencing or activation of defense genes. Histone acetyltransferases (HATs) and deacetylases (HDACs)
modify histone tails through acetylation and deacetylation, altering chromatin structure to either facilitate or restrict
transcription. Likewise, histone methyltransferases (HMTs) and demethylases (HDMs) modulate histone methylation
patterns, fine-tuning gene activation or repression. These epigenetic mechanisms act together to modulate SAR-mediated
immune responses, enabling plants to mount a systemic defense against pathogens. Through this regulation, plants establish
immune memory, allowing faster and stronger responses to future infections.

In Arabidopsis, pathogen infection reduces DNA
methylation near defense genes, while the RNA-directed
DNA methylation (RADM) pathway introduces new
methylation marks that influence resistance. Histone
modifications further fine-tune immune gene expression,
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acting as either activators or repressors genes (Espinas et
al., 2016; Ramirez-Prado et al., 2018; Huang and Jin,
2022). Epigenetic priming maintains defense genes in a
transcriptionally poised state, enabling faster activation
upon subsequent infections; in some cases, this primed
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state and SAR can even be transmitted to the next
generation (Luna et al., 2012). Overall, epigenetic
regulation provides plants with a dynamic and heritable
mechanism for immune memory, offering promising
opportunities for enhancing disease resistance and
promoting sustainable crop production.

HISTONE METHYLATION AND
DEMETHYLATION IN THE SAR PATHWAY
Histone methylation is a key epigenetic
modification regulating the expression of SAR-related
genes by altering chromatin structure and accessibility.
The addition or removal of methyl groups on histone tails
determines whether SAR-associated genes are activated
or repressed. This dynamic balance is maintained by
histone methyltransferases such as ARABIDOPSIS
TRITHORAX 1 (ATX1) and SET DOMAIN GROUP §
(SDGS), and histone demethylases like JUMONIJI 14
(JMJ14), which together fine-tune the transcriptional
reprogramming essential for efficient SAR (Liu et al.,
2019). ATX1, an H3K4 trimethyltransferase, promotes
SAR by activating key defense genes. It directly
catalyzes H3K4me3 deposition on immune-related genes
such as transcription factor WRKY70, creating
transcriptionally active chromatin and inducing the
expression of defense marker PR1 (Alvarez-Venegas et
al., 2007). The recruitment of ATXI to these loci
highlights an epigenetic layer of SAR regulation that
enables rapid and sustained activation of defense genes
upon pathogen challenge. SDGS, a key histone
methyltransferase, catalyzes H3K36 methylation—a
mark linked to transcriptional elongation and active
chromatin. It modulates jasmonate/ethylene signaling
genes such as PDF].2, connecting SAR with broader
defense pathways. SDG8 promotes basal and inducible
expression of defense genes, including MKK5, PDF1.2a,
and VSP2, through H3K36me3 deposition. In sdg8-1
mutants, reduced ERF1 and MYC?2 expression highlights
its role in regulating key transcription factors. Thus,
SDG8-mediated H3K36me3 establishes a permissive
chromatin state that enhances defense gene activation
and provides transcriptional memory supporting plant
immunity (Berr et al., 2010; Kang et al., 2022).
Furthermore, SDGS8 enhances Arabidopsis immunity by
cooperating with RNA polymerase II. The sdg8-/ mutant
shows reduced resistance to P. syringae and weaker
activation of SA-dependent genes like PR/ and PR2.
SDG8 promotes H3K36me3, H3K4me3, and RNAPII
loading, linking chromatin modification with strong,
sustained defense gene expression (Zhang et al., 2020).
In contrast, JMJ14, an H3K4 demethylase, represses
defense genes in the absence of pathogens by removing
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activating methyl marks, conserving energy. It also
represses SNI1, a negative regulator of SAR, by erasing
H3K4me3 marks. In jmjl4 mutants, elevated SNI/
expression and increased H3K4 methylation at PRI
promoters indicate that JMJ14 fine-tunes plant immunity
by balancing positive (PR1, ALD1, and FMO1) and
negative (SNI1) defense regulators (Li et al., 1999; Li et
al., 2020).

HISTONE ACETYLATION AND
DEACETYLATION IN THE SAR PATHWAY
Histone  acetylation  facilitates  chromatin
relaxation, enhancing transcriptional access and
promoting gene expression. A study uncovers the
mechanism of PR-1a transcription initiation in tobacco
under SA induction. It is the first to show that a
nucleosome-repressor complex over the core promoter
keeps the gene inactive in the uninduced state. Upon SA
or HDAC inhibitor (TSA) treatment, increased
H3K9/H4K16 acetylation and H3K4me2/3 lead to
nucleosome disassembly and gene activation.
Meanwhile, the negative regulator SNI1 suppresses
AtPRI in resting conditions, whereas Isd/ mutants show
up to 1000-fold higher expression. Thus, PR-la
activation depends on epigenetic remodeling that
removes repressive chromatin marks following SA
treatment (Lodhi et al.,, 2023). GCNS5, a histone
acetyltransferase in the SAGA complex, modulates
chromatin structure by acetylating H3K14 to regulate
gene expression in Arabidopsis (Srivastava et al., 2015;
Kim et al., 2020). Genome-wide analyses revealed a dual
role of GCNS5: loss of function reduced H3K 14ac at the
5" ends of downregulated genes but increased it at the 3’
ends of upregulated ones, correlating with H3K9ac
changes.  Functionally, @~ GCNS5  represses SA
accumulation and SA-mediated immunity, balancing
biotic and abiotic stress responses. Thus, GCNS acts as a
key epigenetic regulator linking histone acetylation to
plant stress adaptation (Kim et al., 2020). Another study
shows that NPR1 forms a coactivator complex with
CBP/p300-type histone acetyltransferases (HACs) and
TGA transcription factors (Jin et al., 2018). Upon SA
induction, the HAC-NPR1-TGA complex binds PR
chromatin, promoting histone acetylation and
transcriptional activation. Thus, SA-triggered immunity
operates through NPRI1-HAC-mediated epigenetic
reprogramming of defense genes (Jin et al., 2018).
Conversely, histone deacetylases act as repressors
of SAR. Histone deacetylase 6 (HDAOG) acts as a negative
regulator of pathogen defense in Arabidopsis (Wang et
al., 2017). The hda6 (shi5) mutant shows spontaneous
defense activation, elevated PRI and PR2 expression,
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and increased histone acetylation at their promoters,
leading to enhanced resistance to Pst DC3000. HDA6
binds these promoters under normal and infected
conditions, indicating that it represses pathogen-
responsive genes by maintaining low histone acetylation,
thereby modulating defense activation (Wang et al.,
2017). The RPD3/HDAl-class histone deacetylase
HDA19 represses SA-mediated defense in Arabidopsis
by deacetylating histones at PR1 and PR2 promoters.
Loss of HDA19 increases SA levels, PR gene expression,
and resistance to P. syringae, showing its role in
preventing excessive immune activation (Choi et al.,
2012). AtSRT2, a plant homolog of yeast Sir2, acts as a
negative regulator of basal defense in Arabidopsis. Loss
of AtSRT2 enhances resistance to P. syringae and
upregulates PRI, PAD4, EDS5, and SID2, while
overexpression increases susceptibility. Thus, AtSRT2
represses SA biosynthesis and defense gene expression,
weakening immune responses (Wang et al., 2010). The
histone deacetylase TaHDT701, an HD2-type enzyme,
acts as a negative regulator of wheat defense against
Blumeria  graminis. The TaHDT701-TaHDAG6—
TaHOS15 histone deacetylase complex negatively
regulates wheat defense against B. graminis by
repressing 7aPR and TaWRKY45 genes. Silencing these
components enhances resistance through increased
histone acetylation and active chromatin at defense gene
promoters (Zhi et al., 2020). Overall, the balance
between histone acetylation and deacetylation enables
flexible control of SAR pathway gene expression,
ensuring rapid defense activation during infection while
conserving energy under normal conditions.

DNA METHYLATION AND DEMETHYLATION
IN THE SAR PATHWAY

DNA methylation is a stable yet reversible
epigenetic modification, which is dynamicall regulated
by DNA methyltransferases and DNA demethylase
(Srivastava and Lodhi, 2022). In plants, methylation
occurs in CG, CHG, and CHH contexts and is maintained
by specific DNA methyltransferases such as METI,
CMT3, and DRM2. Equally critical is active
demethylation, mediated by DNA demethylase like
ROS1, DME, DML2, and DML3, which remove methyl
marks to enable the transcription of immune-responsive
genes (Li et al., 2018). DNA methylation dynamically
regulates Arabidopsis immunity. Pathogen or SA
exposure induces differentially methylated regions,
especially near transposons, linked to 21-nt siRNA
accumulation and altered defense gene expression
(Dowen et al.,, 2012). Several studies revealed that
regulates SAR by altering the accessibility of defense-
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related gene loci (Li et al., 2018). SAR provides broad-
spectrum protection by activating SA-dependent defense
in distal tissues. SA induces extensive gene expression
and DNA demethylation at defense-related transposons,
while pathogen-responsive siRNAs support long-
distance and heritable immune priming. Together, these
epigenetic changes likely underlie transgenerational
inheritance of enhanced immunity (Yu etal., 2013). SAR
can be inherited epigenetically in Arabidopsis. Offspring
of PstDC3000-infected plants show enhanced SA-
dependent defense and resistance to biotrophs, linked to
increased H3K9 acetylation and DNA hypomethylation
at defense genes. This transgenerational SAR requires
NPRI1, suggesting that epigenetic reprogramming primes
SA-mediated immunity across generations (Luna et al.,
2012). A key pathway involved in SAR regulation is
RdDM, comprising components like NRPE1, NRPD2,
and AGO4. RADM primarily targets transposable
elements and adjacent regulatory regions, indirectly
affecting immune gene expression by modifying
chromatin structure. Mutants deficient in RdDM
components, such as nrpel and nrpd2, exhibit
widespread DNA hypomethylation, enhanced basal
resistance, and elevated expression of SA-responsive
genes like PRI (Lopez et al, 2011). DNA
(de)methylation influences SA-dependent defense
against  biotrophic  pathogen  Hyaloperonospora
arabidopsidis. The nrpel mutant with DNA
hypomethylation shows enhanced PRI/ induction and
resistance, whereas the ros/ mutant with
hypermethylation exhibits reduced PR/ expression and
susceptibility, indicating that hypomethylation primes
SA-mediated defense responses (Lopez Sanchez et al.,
2016). DNA methylation influences the expression of
SUPPRESSOR OF NPRI1-1, CONSTITUTIVE 1
(SNC1), a constitutive repressor of PR1. In Arabidopsis,
MOS1, a BAT2-domain protein, regulates SNCI
expression at the chromatin level. Loss of MOSI
suppresses SNCI and associated defense responses,
whereas DNA demethylation restores expression. Thus,
MOS! modulates SNCI transcription through DNA
methylation—dependent chromatin control (Li et al.,
2010). PRI induction was reduced in ros/ mutants upon
flg22 treatment, indicating that ROS1 functions as a
positive regulator of SA-dependent defense responses
during PTI (Yu et al., 2013).

CONCLUSION

SAR endows plants with long-lasting, broad-
spectrum immunity through coordinated signaling
involving SA, NHP, and key regulators such as NPR1,
WRKY, and TGA transcription factors. Epigenetic

Indian J. L. Sci. 14 (1): 09-16, 2024



Ravi N and Srivastava R: Insights into Epigenetic Regulation of Systemic Acquired Resistance in Plants

mechanisms, including DNA methylation, histone
modifications, and chromatin remodeling, further refine
SAR by regulating defense gene expression and
establishing immune memory. Future research should
integrate epigenomic and functional genomic approaches
to unravel SAR-associated chromatin dynamics and
harness epigenome editing for developing durable,
broad-spectrum disease-resistant crops capable of
withstanding diverse environmental challenges.
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