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ABSTRACT 
 Genotoxic agents—particularly heavy metals such as arsenic, lead, cadmium, and mercury—pose significant threats to 
human health by inducing DNA damage and promoting genomic instability. These agents affect both somatic and germ cells, 
contributing to a wide range of health outcomes, including various cancers, neurodegenerative disorders, infertility, and 
heritable genetic diseases. Genotoxicity interferes with essential cellular processes such as DNA repair and cell cycle regulation, 
leading to cascading biological effects that compromise cellular function and overall organismal health. Understanding the 
underlying mechanisms of genotoxic stress is critical for identifying molecular targets, developing reliable diagnostic 
biomarkers, and designing effective strategies for disease prevention and treatment. This underscores the urgent need for 
rigorous monitoring and mitigation of genotoxic exposures, particularly in rapidly industrializing regions where environmental 
contamination is on the rise. This review highlights the critical effects of genotoxicity on cellular response mechanisms and its 
contribution to the progression of human diseases. 
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 In today’s industrialized and technology-

driven era, human exposure to hazardous substances has 
risen dramatically due to widespread industrialization, 
urbanization, and modern agricultural practices. These 
developments have introduced numerous synthetic and 
naturally occurring toxicants into the environment, 
transforming contamination into a global concern rather 
than a localized issue. Hazardous agents, such as food 
additives, pesticides, industrial chemicals, radiation, 
microbial byproducts, and heavy metals, are now 
commonly found in the air we breathe, the water we 
drink, the soil we cultivate, and the food we consume. 
Unfortunately, many of these compounds enter 
commercial use without undergoing complete 
toxicological studies, creating regulatory vulnerabilities 
that promote chronic human exposure to genotoxicants, 
substances capable of causing DNA damage and 
disrupting the genome.  

Genotoxic substances can be broadly classified 
into four major categories based on their mode of action 
and origin. Chemical agents, including alkylating 
compounds, nitrogen mustards, intercalators, and base 
analogues, disrupt the fidelity of DNA replication and 
induce mutations by directly modifying nucleotides or 
interfering with DNA structure. Physical agents such as 
ionizing radiation (X-rays and gamma rays) and non-
ionizing radiation (ultraviolet light) are known to cause 
DNA strand breaks, chromosomal fragmentation, and 
other forms of structural damage that compromise 
genomic stability (Blank and Goodman, 2011; 
Miyakoshi, 2013; Almaqwashi et al., 2016). Heavy 
metals—notably cadmium, arsenic, chromium, lead, and 
mercury—contribute to genotoxicity through 
mechanisms including the generation of reactive oxygen 
species (ROS), inhibition of DNA repair enzymes, and 

the formation of DNA–protein crosslinks, which 
collectively interfere with genomic maintenance (Errol et 
al., 2006; Tchounwou et al., 2012). Lastly, Microbial 
toxins such as aflatoxins and bacterial genotoxins can 
induce both oxidative and alkylative DNA damage. 
These toxins impair replication fidelity and DNA repair, 
leading to the accumulation of mutations and 
contributing to the initiation and progression of 
carcinogenesis (Grasso and Frisan, 2015).  

These diverse sources of genotoxic exposure 
highlight the urgent need for stringent toxicological 
evaluation, regulatory oversight, and public health 
measures to mitigate long-term genomic risks. 

 
Cellular Responses to Heavy Metal Genotoxic Stress 

Genotoxic effects encompass a broad range of 
DNA alterations, including single- and double-strand 
breaks, base modifications, DNA cross-linking, abasic 
site formation, and chromosomal rearrangements (Figure 
1). Genotoxic agents, also known as genotoxins, are 
classified into three types based on their biological 
effects: carcinogens, which promote uncontrolled cell 
proliferation and tumor formation; mutagens, which alter 
DNA sequences and may cause heritable mutations; and 
teratogens, which disrupt embryonic development and 
cause congenital anomalies (Purchase, 1994; Kaina, 
2003; Kastan and Bartek, 2004; Cavalieri et al., 2012).  

Upon exposure to genotoxic agents, especially 
heavy metals, cells activate a complex array of molecular 
defense mechanisms to maintain genomic stability. 
These include DNA damage recognition and repair 
systems such as base excision repair (BER), nucleotide 
excision repair (NER), mismatch repair (MMR), and 
homologous recombination (HR). When damage is 
irreparable, cells initiate apoptosis to eliminate damaged 
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cells, thereby preserving tissue function (Torgovnick and 
Schumacher, 2015; Roos et al., 2016; Srivastava et al., 
2016). 

 

 
 

Figure 1. Genotoxic agents induce a range of DNA 
alterations,  

 
Heavy metal exposure often activates DNA-

damage sensors such as ATM and ATR kinases, which 
phosphorylate CHK1, CHK2, and p53, leading to cell 
cycle arrest and allowing time for DNA repair or 
triggering apoptosis if repair fails (Shackelford et al., 
1999; Kastan and Bartek, 2004). In parallel, heavy metals 
induce oxidative stress through the overproduction of 
ROS, like superoxide anions, hydrogen peroxide, and 
hydroxyl radicals, which damage nucleic acids, proteins, 
and lipids and disrupt mitochondrial function. Although 
cells deploy antioxidant enzymes such as SOD, catalase, 
and GPx and non-enzymatic antioxidants like 
glutathione (GSH), chronic exposure to metals like 
cadmium, arsenic, and lead can overwhelm these 
systems, resulting in oxidative DNA lesions including 8-
oxoguanine (Cooke et al., 2003; Evans et al., 2004; 
Jomova and Valko, 2011; Sytar et al., 2013). 

Heavy metals also activate inflammatory 
signaling pathways such as NF-κB, which governs 
cytokines like IL-6 and TNF-α, contributing to tissue 
damage and carcinogenesis. Simultaneously, activation 
of MAPK pathways, including ERK, JNK, and p38, 
regulates cellular stress responses and apoptosis (Wang 
and Shi, 2001; Matsuoka and Igisu, 2002; Waisberg et 

al., 2003; Beyersmann and Hartwig, 2008; Milnerowicz 
et al., 2015). 

At the epigenetic level, arsenic and nickel 
inhibit DNMTs and HDACs, while cadmium and 
chromium alter histone modifications, leading to gene 
silencing or activation of oncogenes (Mishra et al., 2010; 
Fragou et al., 2011; Srivastava and Ahn, 2015; Srivastava 
et al., 2016; Srivastava et al., 2016). These changes may 
persist across cell generations and contribute to long-
term disease risks, including cancer and developmental 
disorders. 

To evaluate the genotoxic potential of 
environmental substances, a variety of in vitro and in 
vivo assays are used. The Ames test detects point 
mutations in specific bacterial strains, while the comet 
assay (single-cell gel electrophoresis) quantifies DNA 
strand breaks. The micronucleus test identifies 
chromosomal fragments or entire chromosomes 
excluded from daughter nuclei during mitosis. In vivo 
models, such as rodents and zebrafish, provide systemic 
insights into genotoxicity, developmental impacts, and 
tissue-specific responses (Rojas et al., 1999; Tice et al., 
2000; Jha, 2004; Barbosa et al., 2010; Srivastava et al., 
2012; Srivastava and Srivastava, 2016). Emerging tools 
like omics technologies (transcriptomics, proteomics, 
and epigenomics) and high-content imaging offer 
comprehensive insights into cellular responses to heavy 
metal-induced genotoxicity. 

Complementing these, metabolomics, by 
profiling small molecules in biological samples, offers a 
functional snapshot of biochemical and physiological 
changes, revealing early indicators of toxicity and 
disease risk (Nicholson et al., 1999; Waters, 2010; 
Bouhifd et al., 2013; Bouhifd et al., 2015; Zhao and 
Hartung, 2015) 

Heavy metals significantly disrupt key 
metabolic pathways essential to cellular homeostasis. 
Glycolysis and the tricarboxylic acid (TCA) cycle are 
commonly impaired, resulting in reduced ATP 
production and energetic stress. Fatty acid β-oxidation is 
also inhibited, leading to lipid accumulation, 
mitochondrial dysfunction, and oxidative stress. 
Additionally, heavy metals promote lipid peroxidation, 
which compromises membrane integrity and cellular 
viability. A critical pathway affected by heavy metal 
exposure is one-carbon metabolism, which supports 
nucleotide biosynthesis, redox balance, and methylation 
reactions critical for epigenetic regulation (Hall and 
Gamble, 2012; Kruman and Fowler, 2014). For example, 
cadmium exposure alters urinary levels of creatinine, 
citrate, and various amino acids, signaling renal 
dysfunction, oxidative stress, and impaired energy 
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metabolism (Nicholson et al., 2002; Griffin and Bollard, 
2004; Bundy et al., 2009). Plasma metabolomic analyses 
have similarly demonstrated cadmium-induced 
disruption in lipid and amino acid profiles, consistent 
with mitochondrial toxicity. Arsenic interferes with 
folate and methionine cycles, leading to global 
hypomethylation of DNA and histones. This disruption 
affects chromatin structure and gene expression, thereby 
contributing to genomic instability and carcinogenesis 
(Fragou et al., 2011; Salemi et al., 2017). These 
metabolomic signatures not only serve as early markers 
of systemic toxicity but also act as mechanistic indicators 
linking molecular changes to phenotypic outcomes, 
supporting their application in biomonitoring and risk 
assessment of environmental exposures. 

 
Heavy Metal-Induced Disease Progression in Human 

Heavy metal-induced genotoxicity poses a 
significant public health threat, contributing to the 
pathogenesis of a wide range of chronic and degenerative 
diseases, including cancer, neurodegenerative disorders, 
cardiovascular dysfunction, and developmental 
abnormalities (Table 1). Persistent environmental and 
occupational exposure to toxic metals, particularly 
cadmium, arsenic, lead, mercury, and hexavalent 
chromium, leads to their bioaccumulation in tissues, 
where they exert cytotoxic and genotoxic effects through 
multiple interconnected mechanisms. 

 

Table 1: List of a few Genotoxic agents that cause the human disease progression 
Genotoxic Agent Associated Human Diseases 

1,3-Butadiene Leukemia, Lymphoma 

Acetaldehyde Esophageal cancer, Oral cancer 

Aluminum Neurotoxicity, Alzheimer-like symptoms 

Arsenic Chronic lung disease, Hyperpigmentation, Skin cancer, Liver fibrosis 

Asbestos (inhalation) Asbestosis, Mesothelioma, Lung cancer 

Benzene Acute myeloid leukemia, Bone marrow suppression 

Beryllium Chronic beryllium disease, Lung cancer 

Cadmium Kidney damage, Lung cancer, Osteoporosis 

Chromium (VI) Allergic dermatitis, Nasal septum perforation, Lung cancer 

Copper Liver or kidney damage (long-term), Gastrointestinal distress (short-term) 

Cyclophosphamide Bladder cancer, DNA crosslinks 

Ethylene oxide Breast cancer, Lymphoma 

Formaldehyde Nasopharyngeal cancer, Myeloid leukemia 

Ionizing Radiation Leukemia, Thyroid cancer, Breast cancer 

Lead Neurodevelopmental delays, Kidney damage, Hypertension, Anemia 

Mercury Neurological disorders, Immune dysfunction, Kidney failure 

Nickel Lung cancer, Nasal cancer, Dermatitis 

Nitrosamines Kidney tumors, Liver cancer, and Gastric cancer 

PAHs Lung cancer, Bladder cancer, Skin cancer 

PCBs Liver cancer, Chloracne, Immunotoxicity 

Perchloroethylene Bladder cancer, Esophageal cancer 

Polluted air / Particulates Lung cancer, COPD, Cardiovascular disease 

Silica (inhalation) Silicosis, Lung fibrosis, Lung cancer 

Styrene Nasopharyngeal cancer, Genotoxicity in lymphocytes 

Vinyl chloride Liver angiosarcoma, Brain and lung cancers 

These metals damage DNA directly, induce 
oxidative stress, cause epigenetic alterations, and impair 
DNA repair pathways. Such disruptions result in 
mutation accumulation, chromosomal instability, cell 
cycle arrest, premature senescence, and malignant 
transformation. The DNA damage response (DDR) acts 

as a critical cellular safeguard, detecting DNA lesions, 
initiating repair, activating checkpoints, and determining 
cell fate through survival or programmed death (Hartwig 
et al., 2002; Roos and Kaina, 2006, 2013; Srivastava et 
al., 2016). However, chronic or high-dose exposure to 
heavy metals may overwhelm or disrupt DDR signaling, 



Srivastava DK: Insights into the Genotoxic Effects of Heavy Metals in Human Diseases... 

Indian J. L. Sci. 9 (1): 01-08, 2019                 4 
 

tipping the balance toward genomic instability and 
disease progression. 

A major genotoxic mechanism involves the 
overproduction of reactive oxygen species (ROS). 
Metals such as cadmium, chromium, and arsenic catalyze 
Fenton-like reactions or deplete endogenous antioxidants 
like glutathione and superoxide dismutase (SOD), 
resulting in lipid peroxidation, protein oxidation, and 
DNA damage (Valko et al., 2005; Valko et al., 2006; 
Jomova and Valko, 2011). ROS-induced DNA lesions—
such as 8-oxoguanine and thymine glycol, which induce 
base mispairing, strand breaks, and mitochondrial 
genome instability, ultimately activating pro-apoptotic 
signaling (Evans et al., 2004; Hartwig, 2013). Cadmium, 
while not producing ROS directly, impairs antioxidant 
defenses and displaces zinc from DNA repair enzymes, 
thus indirectly facilitating ROS accumulation and 
oxidative injury (Hartwig et al., 2002; Valko et al., 2006; 
Jomova and Valko, 2011; Hartwig, 2013) 

Heavy metals further contribute to genotoxicity 
by directly inducing DNA adducts, DNA–protein 
crosslinks, strand breaks, and telomere attrition. (Evans 
et al., 2004).  (Hoeijmakers, 2009; Jackson and Bartek, 
2009) (Tornaletti, 2005; Jackson and Bartek, 2009) 
(Phillips, 2005). Telomeric DNA, rich in guanine, is 
especially vulnerable to oxidative attack, leading to 
telomere shortening, chromosomal fusions, and 
premature cellular aging, which are hallmarks of cancer 
and age-related diseases (Jackson and Bartek, 2009).   

Additionally, heavy metals disrupt essential 
DNA repair pathways, further exacerbating genomic 
instability. Cadmium impairs both base excision repair 
(BER) and nucleotide excision repair (NER) by 
inhibiting enzymes such as OGG1 and XPA (Hartwig et 
al., 2002; Hartwig, 2013). Arsenic interferes with BER 
by suppressing PARP1, XRCC1, and DNA ligase I, 
proteins critical for single-strand break repair (Hartwig 
et al., 2002). Lead and chromium inhibit the mismatch 
repair (MMR) pathway, which corrects base mismatches 
and insertion-deletion loops during DNA replication. 
Mercury targets mitochondrial DNA repair, increasing 
ROS generation and compromising mitochondrial 
respiratory function (Jomova and Valko, 2011; Hartwig, 
2013). These inhibitory effects on DNA repair systems 
undermine genomic maintenance and facilitate 
mutagenesis, carcinogenesis, and other degenerative 
diseases. 

Beyond direct DNA damage and repair 
impairment, heavy metals act as potent epigenetic 
modifiers. Arsenic and nickel induce global 
hypomethylation and site-specific hypermethylation of 
critical gene promoters, including tumor suppressors 

such as p16INK4a, MLH1, and BRCA1 (Beyersmann, 
2002; Salnikow and Zhitkovich, 2008; Arita and Costa, 
2009; Brocato and Costa, 2013). Cadmium and 
chromium also alter histone modification patterns 
(acetylation, methylation, phosphorylation), leading to 
chromatin remodeling and dysregulated transcription 
(Beyersmann, 2002; Salnikow and Zhitkovich, 2008; 
Martinez-Zamudio and Ha, 2011; Chervona and Costa, 
2012). Moreover, heavy metals modulate the expression 
of non-coding RNAs, particularly microRNAs (e.g., 
miR-21, miR-34a), which play essential roles in cell 
cycle control, apoptosis, and inflammatory responses 
(Chervona and Costa, 2012). Importantly, these 
epigenetic alterations may be heritable via the germline, 
raising serious concerns about transgenerational health 
impacts. 

The carcinogenic potential of heavy metals is 
further supported by epidemiological and experimental 
evidence. Chronic exposure to cadmium, arsenic, and 
chromium is associated with increased risks of lung, 
liver, bladder, prostate, kidney, and skin (Beyersmann, 
2002; Waisberg et al., 2003; Valko et al., 2006; Arita and 
Costa, 2009; Jaishankar et al., 2014). These metals 
activate oncogenic signaling pathways such as NF-κB, 
MAPK, and PI3K/AKT, promote epithelial–
mesenchymal transition (EMT), and enhance 
angiogenesis, which facilitates tumor progression and 
metastasis (Matsuoka and Igisu, 2002; Valko et al., 2005; 
Colotta et al., 2009). Moreover, loss-of-function 
mutations and epigenetic silencing of DDR genes such 
as TP53, ATM, and BRCA1/2 are frequently observed in 
heavy metal-associated cancers (Carney et al., 1998; 
Rotman and Shiloh, 1999; Roos et al., 2016). 

The central nervous system is particularly 
susceptible to heavy metal-induced genotoxicity. These 
metals can cross the blood–brain barrier and accumulate 
in neurons, leading to oxidative stress, mitochondrial 
dysfunction, neuroinflammation, and synaptic disruption 
(Crespo-López et al., 2009). Lead and mercury have been 
linked to cognitive impairment, behavioral 
abnormalities, and neurodevelopmental delays in 
children (Jomova and Valko, 2011). In adults, cadmium 
and arsenic exposure are implicated in Alzheimer’s 
disease (AD) and Parkinson’s disease (PD) through 
mechanisms involving amyloid-β aggregation, tau 
phosphorylation, and dopaminergic neuron degeneration 
(Crespo-López et al., 2009). 

Reproductive toxicity is another major 
consequence of heavy metal genotoxicity. Cadmium 
induces sperm DNA fragmentation and testicular 
apoptosis, while arsenic disrupts meiotic progression and 
fetal DNA methylation (Hartwig et al., 2002; Valko et 
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al., 2005; Valko et al., 2006; Diamanti-Kandarakis et al., 
2009; Sweeney et al., 2015). Maternal exposure to lead 
or mercury during pregnancy has been associated with 
low birth weight, neural tube defects, and impaired 
neurocognitive development in offspring (Mendola et al., 
2002; Kasperczyk et al., 2004; Brender et al., 2006). 
These adverse effects stem from both direct genotoxic 
damage during organogenesis and epigenetic 
reprogramming, potentially affecting offspring health 
over the long term. 

The immune system, dependent on DNA 
rearrangement for lymphocyte diversity, is also a key 
target of genotoxic stress. Heavy metals interfere with 
V(D)J recombination, clonal expansion, and 
immunoglobulin production (Dietert and Piepenbrink, 
2006; Dietert, 2009). Lead, cadmium, and mercury 
reduce thymocyte proliferation, induce apoptosis in B 
and T cells, and impair hematopoietic stem cell function 
(Crespo-López et al., 2009; Mishra, 2009; Maqbool et 
al., 2017). These effects contribute to immunodeficiency, 
increased susceptibility to infections, and the 
development of hematological malignancies such as 
leukemia and lymphoma, particularly in populations with 
chronic exposure (Lawrence and McCabe, 2002). 

Heavy metal-induced genotoxicity significantly 
affects cardiovascular and metabolic health. Cadmium, 
lead, and arsenic induce DNA damage in endothelial 
cells, contributing to vascular inflammation, 
hypertension, and atherogenesis (Kasperczyk et al., 
2004; Vaziri, 2008; Messner and Bernhard, 2010; 
Ellinsworth, 2015; Kukongviriyapan et al., 2016). 
Mitochondrial genotoxicity impairs cardiomyocyte 
function, compromising energy metabolism and 
promoting cardiomyopathy (Varga et al., 2015). These 
metals also disrupt lipid and glucose metabolism, leading 
to obesity, insulin resistance, and chronic low-grade 
inflammation—hallmarks of metabolic syndrome and 
type 2 diabetes (Vaziri, 2008; Tellez-Plaza et al., 2013). 

 
Conclusion and Future Perspectives 

Recent and past studies consistently 
demonstrate that genotoxic agents, encompassing 
physical, chemical, and environmental factors, play a 
central role in inducing genomic instability, which 
adversely impacts human health through various 
biological pathways. Genotoxic effects manifest in both 
somatic and germ cells, with serious implications. In 
somatic cells, such alterations are strongly associated 
with the initiation and progression of cancer and other 
degenerative disorders. In germ cells, genotoxicity can 
result in infertility, inherited genetic disorders, and 
complex multifactorial diseases, thereby posing 

transgenerational health risks. The genotoxicity induced 
by heavy metals and other agents triggers a cascade of 
molecular events that compromise essential cellular 
processes, including DNA replication, repair 
mechanisms, and cell cycle regulation. These disruptions 
can lead to persistent genomic instability, chronic 
inflammation, and ultimately, cellular transformation or 
programmed cell death. Understanding the intricate 
molecular responses to genotoxic stress, particularly the 
cellular DNA damage response (DDR), is critical for 
elucidating disease mechanisms and identifying potential 
molecular targets for therapy.  

In summary, heavy metal-induced genotoxicity 
remains a major global health concern, contributing to a 
broad spectrum of human diseases. Continued 
advancements in molecular biology, epigenetics, and 
toxicogenomics are vital for deepening our 
understanding of how genotoxic agents operate. Such 
insights will inform the development of improved 
diagnostic tools, effective preventive strategies, and 
novel targeted therapies aimed at mitigating the harmful 
impacts of environmental and occupational 
genotoxicants.  
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